
Sahel Torkamani
Coding Theory 



Contents

• Introduction 


• Error detection, correction and decoding 


• Linear codes

 T. M. Thompson- From Error Correcting Codes Through Sphere Packings, to Simple Groups:
1.The origin of error correcting codes



Introduction

Source Coding:

Changing the message source to a suitable code 
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Encoding the message by introducing some form of redundancy
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Introduction

The goal of channel coding:

(1) fast encoding of messages;

(2) easy transmission of encoded messages; 
(3) fast decoding of received messages; 
(4) maximum transfer of information per unit time;

(5) maximal detection or correction capability.


Errors CorrectDetect

Example: repetition code -> r+1 times for detecting r errors




Error detection, correction and decoding 


Definitions:

(1) Code Alphabet:  -> finite field  of order q 

(2) Code Symbols:  
(3) q-ary word:  
(4) q-ary block code: non empty set  of q-ary words having the same length n. 


(5) Code word: 

(6) Size of C: 

(7) Information rate of a code C of length n: 

(8) (n, M)-code: A code of length n and size M 

A = {a1, …, aq} Fq

a1, …, aq

W = w1…wn : wi ∈ A
C

c ∈ C
|C |

(logq |C | )/n
+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

Addition and multiplication tables for Z2 




Error detection, correction and decoding 


Communication channel:

consists of a finite channel alphabet  as well as a set of forward channel probabilities 

,satisfying:


 for all i. 


Memoryless:

if  and  are words of length n, then 


q-ary symmetric channel:

a memoryless channel which has a channel alphabet of size q such that 


(i) each symbol transmitted has the same probability p (<1/2) of being received in error; 


(ii) if a symbol is received in error, then each of the q − 1 possible errors is equally likely. 

A = {a1, . . . , aq}
P(aj received |ai sent)

q

∑
j=1

P(aj received |ai sent) = 1

c = c1c2…cn x = x1x2…xn P(x received |c sent) = Πn
i=1P(xi received |ci sent)

Binary symmetric channel

(BSC)


0
 0


1
 1


P


P


1-P


1-P




Error detection, correction and decoding 


Maximum Likelihood decoding (MLD):

 
P(x received |cx sent) = max

c∈C
P(x received |c sent)

(i) Complete maximum likelihood decoding (CMLD):

If a word x is received, find the most likely codeword transmitted.

If there are more than one such codewords, select one of them arbitrarily.

 


(ii) Incomplete maximum likelihood decoding (IMLD):

If a word x is received, find the most likely codeword transmitted.

If there are more than one such codewords, request a retransmission. 




Error detection, correction and decoding 


Hamming distance:

If  and  then 








Nearest neighbour/minimum distance decoding (NND-MDD):




x = x1x2…xn y = y1y2…yn d(x, y) = d(x1, y1) + … + d(xn, yn)

d(xi, yi) = 1 if xi ≠ yi

d(xi, yi) = 0 if xi = yi

d(x, cx) = min
c∈C

d(x, c)

(i) Complete nearest neighbour decoding (CNND)


(ii) Incomplete nearest neighbour decoding (INND)



Error detection, correction and decoding 


Definitions:

(1) Distdnce of C: 

(2) (n, M, d)-code: A code of length n and size M and distance d 
(3) u-error-detecting: codeword incurs at least one but at most u errors <-> 

(4) v-error-correcting: minimum distance (incomplete) decoding is able to correct v or fewer errors <-> 

d(C) = min{d(x, y) : x, y ∈ C, x ≠ y}

d(C) ≥ u + 1
d(C) ≥ 2v + 1



Linear Codes
Let    be the finite field of order q . A nonempty set V , together with some (vector) addition + and scalar multiplication 
by elements of , is a vector space (or linear space) over   if it satisfies all of the following conditions. For all u, v, w ∈ 
V and for all λ, μ ∈ : 


• (i)  u+v∈V;  

• (ii)  (u+v)+w = u+(v+w);  

• (iii)  there is an element 0 ∈ V with the property 0+v = v = v+0 for all v∈V;  

• (iv)  for each u∈V there is an element of V, called −u, such that u+(−u)= 0 = (−u)+u;  

• (v)  u+v=v+u;  

• (vi)  λv∈V;  

• (vii)  λ(u+v)=λu+λv,(λ+μ)u=λu+μu;  

• (viii)  (λμ)u = λ(μu);  

• (ix)  if 1 is the multiplicative identity of , then 1u=u. 

Fq

Fq Fq

Fq

Fq



Linear Codes

A linear code C of length n over  is a subspace of 


(1) Dual code of : , the orthogonal complement of the subspace C of  . 
(2) Dimension of : the dimension of  as a vector space over  . -> . (  )

 ->  

Fq Fn
q

C C⊥ Fn
q

C C Fq dim(C) = logq |C | |C | = qdim(C)

dim(C) + dim(C⊥) = n

C⊥ = {x ∈ Fq | < x, y > = 0 for all y ∈ C}

 Example (1):

 

 

 

 

C = {0000,1010,0101,1111}
dim(C) = log2 |C | = log2 4 = 2
C⊥ = {0000,1010,0101,1111}
dim(C⊥) = log2 |C | = log2 4 = 2

 Example (2):

 

 

 

 

C = {000,001,002,010,020,011,012,021,022}
dim(C) = log3 |C | = log3 9 = 2
C⊥ = {000,100,200}
dim(C⊥) = log3 |C | = log3 3 = 1



Linear Codes
Hamming weight: 








 -> Lemma: 

wt(x) = d(x,0) =
n

∑
i=1

wt(xi)

wt(xi) = 1 if x ≠ 0

wt(xi) = 0 if x = 0

d(x, y) = wt(x − y)

The minimum (Hamming) weight: wt(C) = min
0≠x∈C

wt(x)



Linear Codes
Bases for linear codes:

Input: A nonempty subset S of  . 


Output: A basis for C = < S >, the linear code generated by S. 


Algorithm 1:

Description: Form the matrix A whose rows are the words in S. Use elementary row 
operations to find an REF of A. Then the nonzero rows of the REF form a basis for C.


Fn
q



Linear Codes

Algorithm 2:

Description: Form the matrix A whose columns are the words in S. Use elementary row 
operations to put A in REF and locate the leading columns in the REF. Then the original 
columns of A corresponding to these leading columns form a basis for C.

1 2   4



Linear Codes
Algorithm 3:

Description: Form the matrix A whose rows are the words in S. Use elementary row 
operations to place A in RREF. Let G be the k × n matrix consisting of all the nonzero rows 

of the RREF:  

The matrix G contains k leading columns. Permute the columns of G to form . 
Form a matrix H′ as follows: . 
Apply the inverse of the permutation applied to the columns of G to the columns of H′ to 
form H. Then the rows of H form a basis for . 


 


A → (G
0)

G′￼= (Ik |X)
H′￼= (−XT | In−k)

C⊥

1 2   4



Linear Codes
Generator matrix: Matrix G whose rows form a basis for C. -> Standard: 

Parity-check matrix: Matrix H is a generator matrix for the dual code . -> Standard: 


Let C be a linear code and let H be a parity-check matrix for C. Then the following statements are 
equivalent: 


(i)  C has distance d; 


(ii)  any d − 1 columns of H are linearly independent and H has d columns that are linearly dependent.


-> If  is the standard form generator matrix of an [n,k]-code C, then a parity-check matrix for 
C is . 


 

G = (Ik |X)
C⊥ H = (Y | In−k)

G = (Ik |X)
H = (−XT | In−k)



Linear Codes
Two (n, M)-codes over Fq are equivalent if one can be obtained from the other by a combination of 
operations of the following types: 


(i) permutation of the n digits of the codewords; 
(ii) multiplication of the symbols appearing in a fixed position by a nonzero scalar.


 -> Any linear code C is equivalent to a linear code C′ with a generator matrix in standard form. 


 Example (1):

 Let q = 2 and n = 4. Choosing to rearrange the bits in the

 order 2, 4, 1, 3, we see that the code 


  C = {0000, 0101, 0010, 0111} is equivalent to the code

 C’={0000,1100,0001,1101}. 

 Example (2):

 Let q = 3 and n = 3. Consider the ternary code    

 C = {000, 011, 022}. 
 Permuting the first and second positions,

 followed by multiplying the third position by 2,  

 we obtain the equivalent code

 C′ ={000,102,201}. 




Linear Codes
Encoding with a linear code: 


Let C be an [n, k, d]-linear code over the finite field  . Each codeword of C can represent one piece of 
information, so C can represent  distinct pieces of information. Once a basis is fixed for C, 
each codeword v, or, equivalently, each of the  pieces of information, can be uniquely written as a linear 
combination,  . (G is the generator matrix of C whose ith row is the vector  in 
the chosen basis. )

 -> The process of representing the elements u of   as codewords v = uG in C is called encoding. 


Fq

qk {r1, …, rk}
qk

v = u1r1 + … + ukrk = uG ri

Fk
q

 Example (1):

 Let C be the binary [‎5,3]-linear code with the generator matrix


  -> for : G = (
10110
01011
00101) u = 101 v = uG = (101) (

10110
01011
00101) = 10011



Linear Codes
If an [n,k,d]-linear code C has a generator matrix G in standard form, , then it is trivial to 
recover the message u from the codeword v = uG ->  ; 


Message digits: the first k digits in the codeword v = uG give the message u.

Check digits: The remaining n − k digits!


The check digits represent the redundancy which has been added to the message for protection against 
noise. 


G = (Ik |X)
v = uG = u(I |X) = (u, uX)



Linear Codes

Coset: (of C) determined by u to be the set: .

Coset leader: A word of the least (Hamming) weight in a coset. 

u + C = C + u = {v + u : v ∈ C}

 Example (1):

 Let q = 2 and C = {000, 101, 010, 111}. Then 


 C + 000 = {000, 101, 010, 111},

 C + 001 = {001, 100, 011, 110},

 C + 010 = {010, 111, 000, 101},

 C + 011 = {011, 110, 001, 100},

 C + 100 = {100, 001, 110, 011},

 C + 101 = {101, 000, 111, 010},

 C + 110 = {110, 011, 100, 001},

 C + 111 = {111, 010, 101, 000}. 




Linear Codes
Assume the codeword v is transmitted and the word w is received,

Error pattern (Error string): e = w − v ∈ w + C. 


Then w − e = v ∈ C, so the error pattern e and the received word w are in the same coset. 


Nearest neighbour decoding:

Since error patterns of small weight are the most likely to occur, nearest neighbour decoding works for a 
linear code C in the following manner. Upon receiving the word w, we choose a word e of least weight in 
the coset w + C and conclude that v = w − e was the codeword transmitted. 


 Example (1):

 Let q = 2 and C = {0000, 1011, 0101, 1110}.

 Decode the following received words:

 (i) w =   1101; (ii) w = 1111. 

 First, we write down the standard array of C 


  C + 0000 = {0000, 1011, 0101, 1110},

 C + 0001 = {0001, 1010, 0100, 1111} -> (ii) e = 0001 or 0100 -> complete or incomplete ?!

 C + 0010 = {0010, 1001, 0111, 1100},

 C + 1000 = {1000, 0011, 1101, 0110} -> (i) e = 1000 -> w-e=0101



Linear Codes

Syndrome decoding: 

(i) S(u+v)=S(u)+S(v); 
(ii) S(u)=0 if and only if u is a codeword in C; 


(iii) S(u)=S(v)if and only if u and v are in the same coset of C. 


Syndrome look-up table (Standard Decoding Array (SDA).): table which matches each coset leader with its syndrome.

 -> Steps to construct a syndrome look-up table assuming complete nearest neighbour decoding 


Step 1: List all the cosets for the code, choose from each coset a word of least weight as coset leader u. 


Step 2: Find a parity-check matrix H for the code and, for each coset leader u, calculate its syndrome S(u) = uHT. 


∀w ∈ Fn
q : S(w) = wHT ∈ Fn−k

q



Linear Codes

Decoding procedure for syndrome decoding:


Step 1: For the received word w, compute the syndrome S(w). 
Step 2: Find the coset leader u next to the syndrome S(w) = S(u) in the syndrome look-up table. 

Step3: Decode w as v=w−u. 


 Example (1): Let q = 2 and let C = {0000, 1011, 0101, 1110}. Use the syndrome look-up table below  
to decode (i) w = 1101; (ii) w = 1111. 


(i) w = 1101. The syndrome is . From Table, we see that the coset leader is 1000. 
Hence, 1101 + 1000 = 0101 was a most likely codeword sent. 


(ii) w = 1111. The syndrome is . From Table, we see that the coset leader is 0001. 
Hence, 1111 + 0001 = 1110 was a most likely codeword sent. 


S(w) = wHT = 11

S(w) = wHT = 01
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