Coding Theory Sahel Torkamani

Contents

- Introduction
- Error detection, correction and decoding
- Linear codes

T. M. Thompson- From Error Correcting Codes Through Sphere Packings, to Simple Groups: 1.The origin of error correcting codes

Source Coding: Changing the message source to a suitable code

Channel Coding: Encoding the message by introducing some form of redundancy

Introduction

Introduction

Example: repetition code -> r+1 times for detecting r errors

The goal of channel coding:
(1) fast encoding of messages;
(2) easy transmission of encoded messages;
(3) fast decoding of received messages;
(4) maximum transfer of information per unit time;
(5) maximal detection or correction capability.

Definitions:

- (1) Code Alphabet: $A = \{a_1, ..., a_q\} \rightarrow finite field F_q$ of order 9 (2) Code Symbols: a_1, \ldots, a_q
- (3) q-ary word: $W = w_1 \dots w_n : w_i \in A$
- (4) q-ary block code: non empty set C of q-ary words having the same length n.
- (5) Code word: $c \in C$
- (6) Size of C: |C|
- (7) Information rate of a code C of length n: $(log_q | C |)/n$
- (8) (n, M)-code: A code of length n and size M

+	0	1	×	0	1
0	0	1	0	0	0
1	7	0	1	0	1

Addition and multiplication tables for Z2

Communication channel:

consists of a finite channel alphabet $A = \{a_1, \ldots, a_q\}$ as well as a set of forward channel probabilities $P(a_i received | a_i sent)$, satisfying: $\sum P(a_j received | a_i sent) = 1$ for all *i*. j=1

Memoryless: if $c = c_1 c_2 \dots c_n$ and $x = x_1 x_2 \dots x_n$ are words of length n, then $P(x \text{ received} | c \text{ sent}) = \prod_{i=1}^n P(x_i \text{ received} | c_i \text{ sent})$

9-ary symmetric channel:

a memoryless channel which has a channel alphabet of size 9 such that (i) each symbol transmitted has the same probability p(z1/2) of being received in error; (ii) if a symbol is received in error, then each of the q - 1 possible errors is equally likely.

Binary symmetric channel (BSC)

Maximum Likelihood decoding (MLD): <

 $P(x received | c_x sent) = \max_{c \in C} P(x received | c sent)$

(i) Complete maximum likelihood decoding (CMLD):
 If a word x is received, find the most likely codeword transmitted.
 If there are more than one such codewords, select one of them arbitrarily.

(ii) Incomplete maximum likelihood decoding (IMLD):
If a word x is received, find the most likely codeword transmitted.
If there are more than one such codewords, request a retransmission.

Hamming distance: If $x = x_1 x_2 \dots x_n$ and $y = y_1 y_2 \dots y_n$ then $d(x, y) = d(x_1, y_1) + \dots + d(x_n, y_n)$ $d(x_i, y_i) = 1 \quad if \ x_i \neq y_i$ $d(x_i, y_i) = 0 \quad if \ x_i = y_i$

Nearest neighbour/minimum distance decoding (NND-MDD): $d(x, c_x) = \min d(x, c)$

(i) Complete nearest neighbour decoding (CNND) 🔰 (ii) Incomplete nearest neighbour decoding (INND)

Theorem 2.4.1 For a BSC with crossover probability p < 1/2, the maximum likelihood decoding rule is the same as the nearest neighbour decoding rule.

Proof. Let C denote the code in use and let x denote the received word (of length *n*). For any vector **c** of length *n*, and for any $0 \le i \le n$,

$$d(\mathbf{x}, \mathbf{c}) = i \Leftrightarrow \mathcal{P}(\mathbf{x} \text{ received} | \mathbf{c} \text{ sent}) = p^i (1-p)^{n-i}.$$

Since p < 1/2, it follows that

$$p^{0}(1-p)^{n} > p^{1}(1-p)^{n-1} > p^{2}(1-p)^{n-2} > \cdots > p^{n}(1-p)^{0}.$$

By definition, the maximum likelihood decoding rule decodes **x** to $\mathbf{c} \in C$ such that $\mathcal{P}(\mathbf{x} \text{ received} | \mathbf{c} \text{ sent})$ is the largest, i.e., such that $d(\mathbf{x}, \mathbf{c})$ is the smallest (or seeks retransmission if incomplete decoding is in use and c is not unique). Hence, it is the same as the nearest neighbour decoding rule.

Definitions: (1) Distance of C: $d(C) = \min\{d(x, y) : x, y \in C, x \neq y\}$ (2) (n, M, d)-code: A code of length n and size M and distance d (3) u-error-detecting: codeword incurs at least one but at most u errors <-> $d(C) \ge u + 1$ (4) v-error-correcting: minimum distance (incomplete) decoding is able to correct v or fewer errors <-> $d(C) \ge 2v + 1$

and the second second

Let F_q be the finite field of order q. A nonempty set V, together with some (vector) addition + and scalar multiplication by elements of F_q , is a vector space (or linear space) over F_q if it satisfies all of the following conditions. For all $u, v, w \in V$ and for all $\lambda, \mu \in F_q$:

• (i) u+v∈V;

• (ii)
$$(u+v)+w = u+(v+w);$$

• (iii) there is an element $0 \in V$ with the property 0+v = v = v+0 for all $v \in V$;

• (iv) for each
$$u \in V$$
 there is an element of V, called $-u$, so

• (v) u+v=v+u;

•
$$(vi) \quad \lambda v \in V;$$

• (vii)
$$\lambda(u+v) = \lambda u + \lambda v, (\lambda + \mu)u = \lambda u + \mu u;$$

•
$$(\gamma i i i) (\lambda \mu) \mu = \lambda(\mu \mu);$$

• (ix) if 1 is the multiplicative identity of F_{q} , then 1u=u.

v = v+0 for all $v \in V$; such that u+(-u)=0 = (-u)+u;

A linear code C of length n over F_q is a subspace of F_q^n

(1) Dual code of C: C^{\perp} , the orthogonal complement of the subspace (2) Dimension of C: the dimension of C as a vector space over F $-> \dim(C) + \dim(C^{\perp}) = n$

 $\begin{aligned} & \mbox{Example (1):} \\ & C = \{0000, 1010, 0101, 1111\} \\ & \mbox{dim}(C) = \log_2 |C| = \log_2 4 = 2 \\ & C^{\perp} = \{0000, 1010, 0101, 1111\} \\ & \mbox{dim}(C^{\perp}) = \log_2 |C| = \log_2 4 = 2 \\ & \mbox{dim}(C^{\perp}) = \log_2 |C| = \log_2 4 = 2 \\ & \mbox{dim}(C^{\perp}) = \log_2 |C| = \log_2 4 = 2 \\ & \mbox{dim}(C^{\perp}) = \log_3 |C| \end{aligned}$

 $C^{\perp} = \{ x \in F_q \mid \langle x, y \rangle = 0 \text{ for all } y \in C \}$

ace
$$C$$
 of F_q^n .
 $F_q \cdot \rightarrow \dim(C) = \log_q |C| \cdot (|C| = q^{\dim(C)})$

$$010,020,011,012,021,022$$

= $\log_3 9 = 2$
}
= $\log_3 3 = 1$

Hamming weight:
$$wt(x) = d(x,0) = \sum_{i=1}^{n} wt(x_i)$$

 $wt(x_i) = 1$ if $x \neq 0$
 $wt(x_i) = 0$ if $x = 0$

-> Lemma:
$$d(x, y) = wt(x - y)$$

The minimum (Hamming) weight: $wt(C) = \min_{0 \neq x \in C} wt(x)$

Theorem 4.3.8 Let C be a linear code over \mathbf{F}_q . Then d(C) = wt(C).

Proof. Recall that for any words \mathbf{x} , \mathbf{y} we have $d(\mathbf{x}, \mathbf{y}) = wt(\mathbf{x} - \mathbf{y})$. By definition, there exist \mathbf{x}' , $\mathbf{y}' \in C$ such that $d(\mathbf{x}', \mathbf{y}') = d(C)$, so

 $d(C) = d(\mathbf{x}', \mathbf{y}') = \operatorname{wt}(\mathbf{x}' - \mathbf{y}') \ge \operatorname{wt}(C),$

since $\mathbf{x}' - \mathbf{y}' \in C$.

Conversely, there is a $z \in C \setminus \{0\}$ such that wt(C) = wt(z), so

 $\operatorname{wt}(C) = \operatorname{wt}(\mathbf{z}) = d(\mathbf{z}, \mathbf{0}) \ge d(C).$

Bases for linear codes:

Input: A nonempty subset S of F_q^n . Output: A basis for $C = \langle S \rangle$, the linear code generated by S.

Algorithm 1:

Description: Form the matrix A whose rows are the words in S. Use elementary row operations to find an REF of A. Then the nonzero rows of the REF form a basis for C.

 $S = \{12101, 20110, 01122, 11010\}.$

Algorithm 2:

Description: Form the matrix A whose columns are the words in S. Use elementary row operations to put A in REF and locate the leading columns in the REF. Then the original columns of A corresponding to these leading columns form a basis for C.

$S = \{11101, 10110, 01011, 11010\}.$

$$\begin{pmatrix} 1101 \\ 0110 \\ 0001 \\ 0111 \\ 0111 \end{pmatrix} \rightarrow \begin{pmatrix} 12 & 4 \\ 1101 \\ 0110 \\ 0001 \\ 0000 \\ 0000 \end{pmatrix}$$

Algorithm 3:

Description: Form the matrix A whose rows are the words in S. Use elementary row operations to place A in RREF. Let G be the k x n matrix consisting of all the nonzero rows of the RREF: $A \rightarrow \begin{pmatrix} G \\ 0 \end{pmatrix}$

The matrix G contains k leading columns. Permute the columns of G to form $G' = (I_k | X)$. Form a matrix H as follows: $H' = (-X^T | I_{n-k})$. Apply the inverse of the permutation applied to the columns of G to the columns of H to form H. Then the rows of H form a basis for C^{\perp} .

	1	4	5	7	9 2	3	6	8	10		1	2	3	4	5	6	7	8	9	10
1	0	0	0	0	0 1	0	0	0	0)		10	1	0	0	0	0	0	0	0	0
1	1	0	0	0	00	1	0	0	0			0	1	0	0	0	0	0	0	0
=	1	2	0	0	0 0	0	1	0	0	H =	-	0	0	2	0	1	0	0	0	0
-	2	0	1	0	0 0	0	0	1	0		- 2	0	0	0	1	0	0	1	0	0
	$\sqrt{1}$	2	0	2	1 0	0	0	0	1)		41	0	0	2	0	0	2	0	1	1
	1	States and		and the second							`							NUCHANNER		-

Generator matrix: Matrix G whose rows form a basis for C. -> Parity-check matrix: Matrix H is a generator matrix for the duc

Let C be a linear code and let H be a parity-check matrix for C. Then the following statements are equivalent: (i) C has distance d; (ii) any d - 1 columns of H are linearly independent and H has d columns that are linearly dependent.

-> If $G = (I_k | X)$ is the standard form generator matrix of an [n,k]-code C, then a parity-check matrix for C is $H = (-X^T | I_{n-k}).$

Standard:
$$G = (I_k | X)$$

al code C^{\perp} . -> Standard: $H = (Y | I_{n-k})$

Two (n, M)-codes over F, are equivalent if one can be obtained from the other by a combination of operations of the following types: (i) permutation of the n digits of the codewords; (ii) multiplication of the symbols appearing in a fixed position by a nonzero scalar.

-> Any linear code C is equivalent to a linear code C with a generator matrix in standard form.

Example (1): Let q = 2 and n = 4. Choosing to rearrange the bits in the order 2, 4, 1, 3, we see that the code $C = \{0000, 0101, 0010, 0111\}$ is equivalent to the code $C'=\{0000, 1100, 0001, 1101\}$.

Encoding with a linear code:

Let C be an [n, k, d]-linear code over the finite field F_q . Each codeword of C can represent one piece of information, so C can represent q^k distinct pieces of information. Once a basis $\{r_1, \ldots, r_k\}$ is fixed for C, each codeword v, or, equivalently, each of the q^k pieces of information, can be uniquely written as a linear combination, $v = u_1r_1 + ... + u_kr_k = uG$. (G is the generator matrix of C whose ith row is the vector r_i in the chosen basis.)

-> The process of representing the elements u of F_q^k as codewords v = uG in C is called encoding.

Example (1): Let C be the binary [5,3]-linear code with the generator matrix $G = \begin{pmatrix} 10110\\01011\\00101 \end{pmatrix} \rightarrow for \ u = 101: \ v = uG = (101) \begin{pmatrix} 10110\\01011\\00101 \end{pmatrix} = 10011$

If an [n,k,d]-linear code C has a generator matrix G in standard form, $G = (I_k | X)$, then it is trivial to recover the message u from the codeword $v = uG \rightarrow v = uG = u(I | X) = (u, uX)$; Message digits: the first k digits in the codeword v = uG give the message u. Check digits: The remaining n - k digits!

The check digits represent the redundancy which has been added to the message for protection against noise.

Coset: (of C) determined by u to be the set: $u + C = C + u = \{v + u : v \in C\}$. Coset leader: A word of the least (Hamming) weight in a coset.

Theorem 4.8.4 Let C be an [n, k, d]-linear code over the finite field \mathbf{F}_q . Then,

(i) every vector of \mathbf{F}_{q}^{n} is contained in some coset of C; (ii) for all $\mathbf{u} \in \mathbf{F}_q^n$, $|C + \mathbf{u}| = |C| = q^k$; (iii) for all $\mathbf{u}, \mathbf{v} \in \mathbf{F}_{q}^{n}$, $\mathbf{u} \in C + \mathbf{v}$ implies that $C + \mathbf{u} = C + \mathbf{v}$; (iv) two cosets are either identical or they have empty intersection; (v) there are q^{n-k} different cosets of C; (vi) for all $\mathbf{u}, \mathbf{v} \in \mathbf{F}_{q}^{n}$, $\mathbf{u} - \mathbf{v} \in C$ if and only if \mathbf{u} and \mathbf{v} are in the same coset.

Assume the codeword v is transmitted and the word w is received, Error pattern (Error string): $e = w - v \in w + C$. Then $w - e = v \in C$, so the error pattern e and the received word w are in the same coset.

Nearest neighbour decoding:

Since error patterns of small weight are the most likely to occur, nearest neighbour decoding works for a linear code C in the following manner. Upon receiving the word w, we choose a word e of least weight in the coset w + C and conclude that v = w - e was the codeword transmitted.

Example (1):
Let
$$q = 2$$
 and $C = \{0000, 1011, 0101, 1110\}$.
Decode the following received words:
(i) $w = 1101$; (ii) $w = 1111$.
First, we write down the standard array of C
 $C + 0000 = \{0000, 1011, 0101, 1110\}$,
 $C + 0001 = \{0001, 1010, 0100, 1111\} \rightarrow$ (ii) $e = 0001$ or
 $C + 0010 = \{0010, 1001, 0111, 1100\}$,
 $C + 1000 = \{1000, 0011, 1101, 0110\} \rightarrow$ (i) $e = 1000 \rightarrow 0$

0100 -> complete or incomplete ?!

w - e = 0101

Syndrome decoding: $\forall w \in F_q^n : S(w) = wH^T \in F_q^{n-k}$ (i) S(u+v)=S(u)+S(v);(ii) S(u)=0 if and only if u is a codeword in C; (iii) S(u)=S(v) if and only if u and v are in the same coset of C.

Syndrome look-up table (Standard Decoding Array (SDA).): table which matches each coset leader with its syndrome. -> Steps to construct a syndrome look-up table assuming complete nearest neighbour decoding Step 1: List all the cosets for the code, choose from each coset a word of least weight as coset leader u. Step 2: Find a parity-check matrix H for the code and, for each coset leader u, calculate its syndrome $S(u) = uH\tau$.

Coset leader u	Syndror
0000	0
0001	0
0010	1
1000	1

 $C = \{0000, 1011, 0101, 1110\}.$

me $S(\mathbf{u})$

Decoding procedure for syndrome decoding:

Step 1: For the received word w, compute the syndrome S(w). Step 2: Find the coset leader u next to the syndrome S(w) = S(u) in the syndrome look-up table. Step3: Decode w as v=w-u.

Example (1): Let
$$q = 2$$
 and let $C = \{0000, 1011, 0101, 1110\}$
to decode (i) $w = 1101$; (ii) $w = 1111$.
(i) $w = 1101$. The syndrome is $S(w) = wH^T = 11$. From Table,
Hence, 1101 + 1000 = 0101 was a most likely codeword se
(ii) $w = 1111$. The syndrome is $S(w) = wH^T = 01$. From Table,
Hence, 1111 + 0001 = 1110 was a most likely codeword se

```
)}. Use the syndrome look-up table below
```

we see that the coset leader is 1000. ent.

```
we see that the coset leader is 0001.
```

ent.

Coset leader u	Syndrome $S(\mathbf{u})$
0000	00
0001	01
0010	10
1000	11

Thank You

For your Attention