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Introduction

Source Coding: 
Changing the message source to a suitable code  

Channel Coding: 
Encoding the message by introducing some form of redundancy 

Message source Receiver

Source encoder Source decoder

Channel encoder Channel decoderChannel

Noise



Introduction

The goal of channel coding: 
(1) fast encoding of messages; 
(2) easy transmission of encoded messages; 
(3) fast decoding of received messages; 
(4) maximum transfer of information per unit time; 
(5) maximal detection or correction capability. 

Errors CorrectDetect

Example: repetition code -> r+1 times for detecting r errors 



Error detection, correction and decoding  

Definitions: 
(1) Code Alphabet:  -> finite field  of order q  
(2) Code Symbols:  
(3) q-ary word:  
(4) q-ary block code: non empty set  of q-ary words having the same length n.  

(5) Code word:  
(6) Size of C:  
(7) Information rate of a code C of length n:  
(8) (n, M)-code: A code of length n and size M 

A = {a1, …, aq} Fq

a1, …, aq

W = w1…wn : wi ∈ A
C

c ∈ C
|C |

(logq |C | )/n
+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

Addition and multiplication tables for Z2  



Error detection, correction and decoding  

Communication channel: 
consists of a finite channel alphabet  as well as a set of forward channel probabilities 

,satisfying: 

 for all i.  

Memoryless: 
if  and  are words of length n, then  

q-ary symmetric channel: 
a memoryless channel which has a channel alphabet of size q such that  

(i) each symbol transmitted has the same probability p (<1/2) of being received in error;  

(ii) if a symbol is received in error, then each of the q − 1 possible errors is equally likely. 

A = {a1, . . . , aq}
P(aj received |ai sent)

q

∑
j=1

P(aj received |ai sent) = 1

c = c1c2…cn x = x1x2…xn P(x received |c sent) = Πn
i=1P(xi received |ci sent)

Binary symmetric channel 
(BSC) 

0 0 

1 1 

P 

P 

1-P 

1-P 



Error detection, correction and decoding  

Maximum Likelihood decoding (MLD): 
  P(x received |cx sent) = max

c∈C
P(x received |c sent)

(i) Complete maximum likelihood decoding (CMLD): 
If a word x is received, find the most likely codeword transmitted. 
If there are more than one such codewords, select one of them arbitrarily. 
  

(ii) Incomplete maximum likelihood decoding (IMLD): 
If a word x is received, find the most likely codeword transmitted. 
If there are more than one such codewords, request a retransmission.  



Error detection, correction and decoding  

Hamming distance: 
If  and  then  

 

 

Nearest neighbour/minimum distance decoding (NND-MDD): 
 

x = x1x2…xn y = y1y2…yn d(x, y) = d(x1, y1) + … + d(xn, yn)

d(xi, yi) = 1 if xi ≠ yi

d(xi, yi) = 0 if xi = yi

d(x, cx) = min
c∈C

d(x, c)

(i) Complete nearest neighbour decoding (CNND) 

(ii) Incomplete nearest neighbour decoding (INND)



Error detection, correction and decoding  

Definitions: 
(1) Distdnce of C:  
(2) (n, M, d)-code: A code of length n and size M and distance d 
(3) u-error-detecting: codeword incurs at least one but at most u errors <->  
(4) v-error-correcting: minimum distance (incomplete) decoding is able to correct v or fewer errors <-> 

d(C) = min{d(x, y) : x, y ∈ C, x ≠ y}

d(C) ≥ u + 1
d(C) ≥ 2v + 1



Linear Codes
Let    be the finite field of order q . A nonempty set V , together with some (vector) addition + and scalar multiplication 
by elements of , is a vector space (or linear space) over   if it satisfies all of the following conditions. For all u, v, w ∈ 
V and for all λ, μ ∈ :  

• (i)  u+v∈V;  

• (ii)  (u+v)+w = u+(v+w);  

• (iii)  there is an element 0 ∈ V with the property 0+v = v = v+0 for all v∈V;  

• (iv)  for each u∈V there is an element of V, called −u, such that u+(−u)= 0 = (−u)+u;  

• (v)  u+v=v+u;  

• (vi)  λv∈V;  

• (vii)  λ(u+v)=λu+λv,(λ+μ)u=λu+μu;  

• (viii)  (λμ)u = λ(μu);  

• (ix)  if 1 is the multiplicative identity of , then 1u=u. 

Fq

Fq Fq

Fq

Fq



Linear Codes

A linear code C of length n over  is a subspace of  

(1) Dual code of : , the orthogonal complement of the subspace C of  . 
(2) Dimension of : the dimension of  as a vector space over  . -> . (  ) 
 ->  

Fq Fn
q

C C⊥ Fn
q

C C Fq dim(C) = logq |C | |C | = qdim(C)

dim(C) + dim(C⊥) = n

C⊥ = {x ∈ Fq | < x, y > = 0 for all y ∈ C}

 Example (1): 
  
  
  
 

C = {0000,1010,0101,1111}
dim(C) = log2 |C | = log2 4 = 2
C⊥ = {0000,1010,0101,1111}
dim(C⊥) = log2 |C | = log2 4 = 2

 Example (2): 
  
  
  
 

C = {000,001,002,010,020,011,012,021,022}
dim(C) = log3 |C | = log3 9 = 2
C⊥ = {000,100,200}
dim(C⊥) = log3 |C | = log3 3 = 1



Linear Codes
Hamming weight:  

 

 

 -> Lemma: 

wt(x) = d(x,0) =
n

∑
i=1

wt(xi)

wt(xi) = 1 if x ≠ 0

wt(xi) = 0 if x = 0

d(x, y) = wt(x − y)

The minimum (Hamming) weight: wt(C) = min
0≠x∈C

wt(x)



Linear Codes
Bases for linear codes: 
Input: A nonempty subset S of  .  

Output: A basis for C = < S >, the linear code generated by S.  

Algorithm 1: 
Description: Form the matrix A whose rows are the words in S. Use elementary row 
operations to find an REF of A. Then the nonzero rows of the REF form a basis for C. 

Fn
q



Linear Codes

Algorithm 2: 
Description: Form the matrix A whose columns are the words in S. Use elementary row 
operations to put A in REF and locate the leading columns in the REF. Then the original 
columns of A corresponding to these leading columns form a basis for C.

1 2   4



Linear Codes
Algorithm 3: 
Description: Form the matrix A whose rows are the words in S. Use elementary row 
operations to place A in RREF. Let G be the k × n matrix consisting of all the nonzero rows 

of the RREF:  

The matrix G contains k leading columns. Permute the columns of G to form . 
Form a matrix H′ as follows: . 
Apply the inverse of the permutation applied to the columns of G to the columns of H′ to 
form H. Then the rows of H form a basis for .  

  

A → (G
0)

G′ = (Ik |X)
H′ = (−XT | In−k)

C⊥

1 2   4



Linear Codes
Generator matrix: Matrix G whose rows form a basis for C. -> Standard:  
Parity-check matrix: Matrix H is a generator matrix for the dual code . -> Standard:  

Let C be a linear code and let H be a parity-check matrix for C. Then the following statements are 
equivalent:  

(i)  C has distance d;  

(ii)  any d − 1 columns of H are linearly independent and H has d columns that are linearly dependent. 

-> If  is the standard form generator matrix of an [n,k]-code C, then a parity-check matrix for 
C is .  

 

G = (Ik |X)
C⊥ H = (Y | In−k)

G = (Ik |X)
H = (−XT | In−k)



Linear Codes
Two (n, M)-codes over Fq are equivalent if one can be obtained from the other by a combination of 
operations of the following types:  

(i) permutation of the n digits of the codewords; 
(ii) multiplication of the symbols appearing in a fixed position by a nonzero scalar. 

 -> Any linear code C is equivalent to a linear code C′ with a generator matrix in standard form.  

 Example (1): 
 Let q = 2 and n = 4. Choosing to rearrange the bits in the 
 order 2, 4, 1, 3, we see that the code  

  C = {0000, 0101, 0010, 0111} is equivalent to the code 
 C’={0000,1100,0001,1101}. 

 Example (2): 
 Let q = 3 and n = 3. Consider the ternary code     
 C = {000, 011, 022}. 
 Permuting the first and second positions, 
 followed by multiplying the third position by 2,   
 we obtain the equivalent code 
 C′ ={000,102,201}.  



Linear Codes
Encoding with a linear code:  

Let C be an [n, k, d]-linear code over the finite field  . Each codeword of C can represent one piece of 
information, so C can represent  distinct pieces of information. Once a basis is fixed for C, 
each codeword v, or, equivalently, each of the  pieces of information, can be uniquely written as a linear 
combination,  . (G is the generator matrix of C whose ith row is the vector  in 
the chosen basis. ) 
 -> The process of representing the elements u of   as codewords v = uG in C is called encoding.  

Fq

qk {r1, …, rk}
qk

v = u1r1 + … + ukrk = uG ri

Fk
q

 Example (1): 
 Let C be the binary [5,3]-linear code with the generator matrix 

  -> for : G = (
10110
01011
00101) u = 101 v = uG = (101) (

10110
01011
00101) = 10011



Linear Codes
If an [n,k,d]-linear code C has a generator matrix G in standard form, , then it is trivial to 
recover the message u from the codeword v = uG ->  ;  

Message digits: the first k digits in the codeword v = uG give the message u. 
Check digits: The remaining n − k digits! 

The check digits represent the redundancy which has been added to the message for protection against 
noise.  

G = (Ik |X)
v = uG = u(I |X) = (u, uX)



Linear Codes

Coset: (of C) determined by u to be the set: . 
Coset leader: A word of the least (Hamming) weight in a coset. 

u + C = C + u = {v + u : v ∈ C}

 Example (1): 
 Let q = 2 and C = {000, 101, 010, 111}. Then  

 C + 000 = {000, 101, 010, 111}, 
 C + 001 = {001, 100, 011, 110}, 
 C + 010 = {010, 111, 000, 101}, 
 C + 011 = {011, 110, 001, 100}, 
 C + 100 = {100, 001, 110, 011}, 
 C + 101 = {101, 000, 111, 010}, 
 C + 110 = {110, 011, 100, 001}, 
 C + 111 = {111, 010, 101, 000}.  



Linear Codes
Assume the codeword v is transmitted and the word w is received, 
Error pattern (Error string): e = w − v ∈ w + C.  

Then w − e = v ∈ C, so the error pattern e and the received word w are in the same coset.  

Nearest neighbour decoding: 
Since error patterns of small weight are the most likely to occur, nearest neighbour decoding works for a 
linear code C in the following manner. Upon receiving the word w, we choose a word e of least weight in 
the coset w + C and conclude that v = w − e was the codeword transmitted.  

 Example (1): 
 Let q = 2 and C = {0000, 1011, 0101, 1110}. 
 Decode the following received words: 
 (i) w =   1101; (ii) w = 1111.  
 First, we write down the standard array of C  

  C + 0000 = {0000, 1011, 0101, 1110}, 
 C + 0001 = {0001, 1010, 0100, 1111} -> (ii) e = 0001 or 0100 -> complete or incomplete ?! 
 C + 0010 = {0010, 1001, 0111, 1100}, 
 C + 1000 = {1000, 0011, 1101, 0110} -> (i) e = 1000 -> w-e=0101



Linear Codes

Syndrome decoding:  
(i) S(u+v)=S(u)+S(v); 
(ii) S(u)=0 if and only if u is a codeword in C;  

(iii) S(u)=S(v)if and only if u and v are in the same coset of C.  

Syndrome look-up table (Standard Decoding Array (SDA).): table which matches each coset leader with its syndrome. 
 -> Steps to construct a syndrome look-up table assuming complete nearest neighbour decoding  

Step 1: List all the cosets for the code, choose from each coset a word of least weight as coset leader u.  

Step 2: Find a parity-check matrix H for the code and, for each coset leader u, calculate its syndrome S(u) = uHT.  

∀w ∈ Fn
q : S(w) = wHT ∈ Fn−k

q



Linear Codes

Decoding procedure for syndrome decoding: 

Step 1: For the received word w, compute the syndrome S(w). 
Step 2: Find the coset leader u next to the syndrome S(w) = S(u) in the syndrome look-up table.  
Step3: Decode w as v=w−u.  

 Example (1): Let q = 2 and let C = {0000, 1011, 0101, 1110}. Use the syndrome look-up table below  
to decode (i) w = 1101; (ii) w = 1111.  

(i) w = 1101. The syndrome is . From Table, we see that the coset leader is 1000. 
Hence, 1101 + 1000 = 0101 was a most likely codeword sent.  

(ii) w = 1111. The syndrome is . From Table, we see that the coset leader is 0001. 
Hence, 1111 + 0001 = 1110 was a most likely codeword sent.  

S(w) = wHT = 11

S(w) = wHT = 01
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